PAIR SUM LABELING OF TREES IN ZERO DIVISOR GRAPHS

J.Periaswamy ${ }^{1}$, N.Selvi ${ }^{2}$
${ }^{1}$ Part-Time Research Scholar, Bharathidasan University
Tiruchirapalli, Tamilnadu, India-620 024.
A.V.C.College(Autonomous), Mayiladuthurai, Tamilnadu, India-606 305.
A.D.M.College for Women(Autonomous)
Nagappattinam, Tamilnadu, India-611 001.

Abstract

The first simplification of Beck's [2] zero divisor graph was introduced by Anderson and Livingston[1]. Their motivation was to give a better illustration of the zero divisor structure of the ring. In this paper, we investigate the pair sum labeling behavior of several trees which are obtained from stars and Bi-stars in $\Gamma\left(Z_{n}\right)$. Finally we show that all the trees $\Gamma\left(Z_{2 p}\right)$ of order less than 9 are pair sum graph. Here, we generate pair sum trees from stars in $\Gamma\left(Z_{n}\right)$. Clearly, we denote the vertex and edge sets of the star $\Gamma\left(Z_{2 p}\right)$ by, $V\left(\Gamma\left(Z_{2 p}\right)\right)=\left\{u, u_{i}: 1 \leq i \leq p-1\right\}$ and $E\left(\Gamma\left(Z_{2 p}\right)\right)=\left\{u u_{i}: 1 \leq i \leq p-1\right\}$.

Keywords: Labeling, pair Sum Labeling, Zero divisor graph.
AMS Subject classification: 05C25, 05C69.

1. INTRODUCTION

Let G be a (r, s) graph. An one to one map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots \ldots \ldots \ldots, \pm r\}$ is called a pair sum labeling if the induced edge mapping, $f_{e}: E(G) \rightarrow Z-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is one-one and $f_{e}(E(G))$ is either of the form $\left\{ \pm l_{1}, \pm l_{2}, \ldots ., \pm l_{s / 2}\right\}$ or $\left\{ \pm l_{1}, \pm l_{2}, \ldots ., \pm l_{(s-1) / 2}\right\} \cup\left\{l_{(s+1) / 2}\right\}$ according as S is even or odd. A graph with a pair sum labeling defined on it is called pair sum graph. Pair sum labeling satisfies the following observations.
(i) If f is a pair sum labeling defined on $\Gamma\left(Z_{n}\right)$ then $\sum_{u \in V(G)} d(u) f(u)=0$ iff G is a even size.
(ii) If f is a pair sum labeling then x and $-x$ are not labels of two adjacent vertices. [otherwise, zero appears as an edge label].
(iii) If $\Gamma\left(Z_{n}\right)$ is an even size pair sum graph then $\Gamma\left(Z_{n}\right)-e$ is also a pair sum graph for every edge e.
(iv) Let $\Gamma\left(Z_{n}\right)$ be an odd size pair sum graph with $-f_{e}(e) \notin f_{e}(E)$. Then $\Gamma\left(Z_{n}\right)=e$ is a pair sum graph.
(v) Let $\Gamma\left(Z_{n}\right)$ be a pair sum graph with even size and let f be a pair sum labeling of G with $f(n)=M$. Then the graph $\Gamma\left(Z_{n}\right)^{*}$ with $V\left(\Gamma\left(Z_{n}\right)^{*}\right)=V\left(\Gamma\left(Z_{n}\right)\right) \cup\{v\}$ and $E\left(\Gamma\left(Z_{n}\right)^{*}\right)=E\left(\Gamma\left(Z_{n}\right)\right) \cup\{u v\}$ is also a pair sum graph.
(vi) Let $\Gamma\left(Z_{n}\right)$ be an even order and size graph. If G is super vertex graceful then G is a pairsum graph.
(vii) Every graph is a subgraph of a connected pair sum graph.

The pair sum labeling is introduced in [3] by Ponraj and et al. In [3], [4], [5] and [6] they study the pair sum labeling of cycle, path, star and some of their related graphs. Let R be a commutative ring and let $Z(R)$ be its set of zero-divisors. We associate a graph $\Gamma(R)$ to R with vertices $\Gamma(R)^{*}=Z(R)-\{0\}$, the set of non-zero zero divisors of R and for distinct $u, v \in Z(R)^{*}$, the vertices u and v are adjacent if and only if $u v=0$. The zero divisor graph is very useful to find the algebraic structures and properties of rings. The idea of a zero
divisor graph of a commutative ring was introduced by Beck in [2]. The first simplication of Beck's zero divisor graph was introduced by Anderson and Livingston [1]. Their motivation was to give a better illustration of the zero divisor structure of the ring. Anderson and Livinston, and others e.g., [7, 8, 9], investigate the interplay between the graph theoretic properties of $\Gamma(R)$ and the ring theoretic properties of R. Throught this paper, we consider the commutative ring R by Z_{n} and zero divisor graph $\Gamma(R)$ by $\Gamma\left(Z_{n}\right)$.

2. PAIR SUM LABELING OF SOME TREES IN ZERO DIVISOR GRAPH

Theorem 2.1. Let G be the tree with $V(G)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{i}: 1 \leq i \leq p\right\}$ and $E(G)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u_{i} v_{i}: 1 \leq i \leq p\right\} \cup\left\{u v_{p}\right\}$. Then, G is a pair sum graph.
Proof. Define a map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 2 p\}$ by
$f(u)=1$
$f\left(u_{i}\right)=-i-1,1 \leq i \leq p-1$
$f\left(v_{i}\right)=2 i+1,1 \leq i \leq p-1$
$f\left(v_{p}\right)=2 p$
Here, $f_{e}(E(G))=\{ \pm 1, \pm 2, \ldots, \pm(p-1)\} \cup\{2 p+1\}$. Then, G is a pair sum graph.
Theorem 2.2. If G is a tree with $V(G)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E(G)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u v_{1}, v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}\right\}$, then G is a pair sum graph.

Proof. Define a map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 2 p\}$ by
$f(u)=-1$
$f\left(v_{1}\right)=-4$
$f\left(v_{2}\right)=1$
$f\left(v_{3}\right)=2$
$f\left(v_{4}\right)=3$
$f\left(u_{i}\right)=2 i+3,1 \leq i \leq \frac{p-1}{2}$
$f\left(u_{\left\lfloor\left.\frac{p}{2} \right\rvert\,+i\right.}\right)=-2 i-1,1 \leq i \leq \frac{p-1}{2}$
Here, $f_{e}(E(G))=\{ \pm 3, \pm 4\} \cup\{ \pm 4, \pm 6, \pm 8 \ldots, \pm(p+1)\}$. Here $p+1$ is always even, because p is any prime number which is greater than 2 . Then, G is a pair sum graph.
Theorem 2.3. Let G be the tree with $V(G)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{i}: 1 \leq i \leq 5\right\}$ and $E(G)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u v_{1}, v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}\right\}$. Then G is a pair sum graph.

Proof. Define a map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+5)\}$ by
$f(u)=-1$
$f\left(v_{1}\right)=4$
$f\left(v_{2}\right)=-3$
$f\left(v_{3}\right)=2$
$f\left(v_{4}\right)=-2$
$f\left(v_{5}\right)=-4$
$f\left(u_{i}\right)=6+i, 1 \leq i \leq \frac{p-1}{2}$
$f\left(u_{\left\lfloor\frac{p}{2}\right\rfloor+i}\right)=-i-5,1 \leq i \leq \frac{p-1}{2}$
Here, $f_{e}(E(G))=\{ \pm 1, \pm 3,-6\} \cup\{6, \pm 4, \pm 7, \pm 8, \pm 9, \ldots, \pm(p-1)\} \cup\{-p\}$. Then, the mapping f is pair sum labeling.

Theorem 2.4. If G is a tree with $V(G)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{1}, v_{2}\right\}$ and $E(G)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u_{1} v_{1}, u_{2} v_{2}\right\}$. Then G is a pair sum graph.
Proof. Define $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+2)\}$ by
$f(u)=1$
$f\left(v_{1}\right)=3$
$f\left(v_{2}\right)=5$
$f\left(u_{1}\right)=-2$
$f\left(u_{2}\right)=-3$
$f\left(u_{2+i}\right)=2 i+2,1 \leq i \leq\left\lceil\frac{p-3}{2}\right\rceil$
$f\left(u_{\left\lceil\frac{p-3}{2}\right\rceil+2+i}\right)=-(2 i+4), 1 \leq i \leq\left\lfloor\frac{p-3}{2}\right\rfloor$
Here, $f_{e}(E(G))=\{ \pm 1, \pm 2\} \cup\{ \pm 5, \pm 7, \ldots, \pm p\}$. Hence, f is a pair sum labeling.

Theorem 2.5. The tree with vertex set $V(G)=V\left(\Gamma\left(Z_{2_{p}}\right)\right) \cup\left\{v_{i}: 1 \leq i \leq 5\right\}$ and $E(G)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u v_{1}, v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}\right\}$ is a pair sum graph.

Proof. Define a map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+5)\}$ by
$f(u)=-1$
$f\left(v_{1}\right)=-4$
$f\left(v_{1+i}\right)=i, 1 \leq i \leq 4$
$f\left(u_{1}\right)=-6$
$f\left(u_{2 i}\right)=-6-i, 1 \leq i \leq \frac{p-1}{2}$
Here, $f_{e}(E(G))=\{ \pm 1, \pm 5,-7\} \cup\left\{-7, \pm 8, \pm 9, \ldots, \pm \frac{p+1}{2}\right\} \cup\{\underline{-(p+13)} 2\}$.
Then G is a pair sum graph.
Theorem 2.6. Let G be the tree with $V(G)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{i}: 1 \leq i \leq 6\right\}$ and $E(G)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u v_{1}, v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, u v_{5}, v_{5} v_{6}\right\}$. Then, G is a pair sum graph.

Proof. Define a map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+6)\}$ by
$f(u)=-1$
$f\left(v_{1}\right)=-4$
$f\left(v_{2}\right)=1$
$f\left(v_{3}\right)=2$
$f\left(v_{4}\right)=3$
$f\left(v_{5}\right)=-3$
$f\left(v_{6}\right)=7$
$f\left(u_{i}\right)=-4-2 i, 1 \leq i \leq \frac{p-1}{2}$
$f\left(u_{\frac{p-1}{2}+i}\right)=6+2 i, 1 \leq i \leq \frac{p-1}{2}$
Here, $f_{e}(E(G))=\{ \pm 3, \pm 4, \pm 5\} \cup\{ \pm 7, \pm 8, \ldots, \pm(p+3)\}$. Then, G is a pair sum graph.

Theorem 2.7. Let G be the tree with $V(G)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{i}: 1 \leq i \leq 6\right\}$ and
$E(G)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u v_{1}, v_{1} v_{2}, v_{2} v_{3}, v_{5} v_{6}, u v_{4}\right\}$. Then, G is a pair sum graph.
Proof. Define a map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+6)\}$ by
$f(u)=1$
$f\left(v_{1}\right)=2$
$f\left(v_{2}\right)=3$
$f\left(v_{3}\right)=4$
$f\left(v_{4}\right)=-4$
$f\left(v_{5}\right)=-1$
$f\left(v_{6}\right)=-6$
$f\left(u_{i}\right)=6+i, 1 \leq i \leq \frac{p-1}{2}$
$f\left(u_{\frac{p-1}{2}+i}\right)=-8-i, 1 \leq i \leq \frac{p-1}{2}$
Here, $f_{e}(E(G))=\{ \pm 3, \pm 4, \pm 7\} \cup\left\{ \pm 8, \pm 9, \ldots, \pm \frac{(p+13)}{2}\right\}$. Then, G is a pair sum graph.

Theorem 2.8. The trees $G_{i}(1 \leq i \leq 6)$ with vertex set and edge set given below are pair sum,
(i) $V\left(G_{1}\right)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $E\left(G_{1}\right)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u v_{1}, v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}, v_{5} v_{6}\right\}$.
(ii) $V\left(G_{2}\right)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}$ and $E\left(G_{2}\right)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}, u v_{5}, u v_{6}, v_{6} v_{7}\right\}$.
(iii) $V\left(G_{3}\right)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}$ and $E\left(G_{3}\right)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} u, u v_{5}, v_{5} v_{6}, v_{6} v_{7}\right\}$.
(iv) $V\left(G_{4}\right)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{i} w_{i}: 1 \leq i \leq 4\right\}$ and
$E\left(G_{4}\right)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u w_{1}, w_{1} w_{2}, u w_{3}, w_{3} w_{4}, v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} u\right\}$.
(v) $V\left(G_{5}\right)=V\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{v_{i} w_{i}: 1 \leq i \leq 3\right\}$ and $E\left(G_{5}\right)=E\left(\Gamma\left(Z_{2 p}\right)\right) \cup\left\{u v_{1}, u v_{2}, u v_{3}, v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}\right\}$.

Proof. (i) Define a map $f: V\left(G_{1}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+6)\}$ by
$f(u)=-1$
$f\left(v_{1}\right)=-7$
$f\left(v_{2}\right)=-5$
$f\left(v_{3}\right)=1$
$f\left(v_{4}\right)=3$
$f\left(v_{5}\right)=5$
$f\left(v_{6}\right)=7$
$f\left(u_{i}\right)=-2 i-4,1 \leq i \leq \frac{p-1}{2}$
Here, $f_{e}\left(E\left(G_{1}\right)\right)=\{ \pm 4, \pm 8, \pm 12\} \cup\{ \pm 7, \pm 9, \pm 9 \ldots, \pm(p+4)\}$. Then, G_{1} is a pair sum graph.
(ii) Define a map $f: V\left(G_{2}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+7)\}$ by
$f\left(v_{1}\right)=-3$
$f\left(v_{2}\right)=-6$
$f\left(v_{3}\right)=-1$
$f\left(v_{4}\right)=-4$
$f\left(v_{5}\right)=1$
$f\left(v_{6}\right)=3$
$f(u)=2$
$f\left(u_{1+i}\right)=4+2 i, 1 \leq i \leq \frac{p-1}{2}$
$f\left(u_{\left\lceil\frac{p}{2}\right\rceil+i}\right)=-2 i-8,1 \leq i \leq \frac{p-3}{2}$
Here, $f_{e}\left(E\left(G_{2}\right)\right)=\{ \pm 3, \pm 5, \pm 7\} \cup\{ \pm 8, \pm 10, \ldots, \pm(p+3)\} \cup\{p+5\}$. Then, G_{2} is a pair sum graph.
(iii) Define a map $f: V\left(G_{3}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+7)\}$ by
$f\left(v_{1}\right)=-3$
$f\left(v_{2}\right)=-6$
$f\left(v_{3}\right)=-1$
$f\left(v_{4}\right)=-4$
$f\left(v_{5}\right)=2$
$f\left(v_{6}\right)=3$
$f\left(v_{7}\right)=4$
$f(u)=2$
$f\left(u_{1+i}\right)=7+i, 1 \leq i \leq \frac{p-1}{2}$
$f\left(u_{\frac{p-1}{2}+i}\right)=-i-10,1 \leq i \leq \frac{p-1}{2}$

Here, $f_{e}\left(E\left(G_{3}\right)\right)=\{ \pm 3, \pm 5, \pm 7, \pm 9\} \cup\left\{ \pm 10, \pm 11, \ldots, \pm \frac{(p+15)}{2}\right\} \cup\left\{\frac{-(p+17)}{2}\right\}$. Then, G_{3} is a pair sum graph
(iv) Define a map $f: V\left(G_{4}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+8)\}$ by
$f(u)=-1$
$f\left(v_{1}\right)=3$
$f\left(v_{2}\right)=2$
$f\left(v_{3}\right)=1$
$f\left(w_{1}\right)=-5$
$f\left(w_{2}\right)=-6$
$f\left(w_{3}\right)=7$
$f\left(w_{4}\right)=4$
$f\left(u_{1}\right)=7$
For other vertices we define,
$f\left(u_{i}\right)=-5-2 i, 1 \leq i \leq \frac{p-1}{2}$
$f\left(u_{\left\lfloor\frac{p}{2}\right\rfloor+i}\right)=7+2 i, 1 \leq i \leq \frac{p-1}{2}$
Here, $f_{e}\left(E\left(G_{4}\right)\right)=\{ \pm 3, \pm 5, \pm 6, \pm 11\} \cup\{ \pm 8, \pm 10, \ldots, \pm(p+5)\}$. Then, G_{4} is a pair sum labeling.
(v) Define a map $f: V\left(G_{5}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p+6)\}$ by
$f(u)=-1$
$f\left(v_{1}\right)=2$
$f\left(v_{2}\right)=3$
$f\left(v_{3}\right)=4$
$f\left(w_{1}\right)=-3$
$f\left(w_{2}\right)=-5$
$f\left(w_{3}\right)=-7$
$f\left(u_{i}\right)=2 i+4,1 \leq i \leq \frac{p-1}{2}$
Here, $f_{e}\left(E\left(G_{5}\right)\right)=\{ \pm 1, \pm 2, \pm 3, \ldots, \pm(p+2)\}$. Then, G_{5} is a pair sum labeling.

REFERENCES

[1] D.F.Anderson, P.S.Livingston, The zero- divisor graph of a commutative ring, J.Algebra, 217, No.2, (1999), 434-447.
[2] I.Beck, Colouring of Commutative Rings, J.Algebra, 116, (1988), 208-226.
[3] R.Ponraj, J.V.X.Parthipan, Pair Sum Labeling of Graphs, The Journal of Indian Academy of Mathematics, 32, No.2, (2010), 587-595.
[4] R.Ponraj,J.V.X.Parthipan and R.Kala, Some Results on Pair Sum Labeling, International Journal of Mathematical Combinatorics, 4,(2010), 55-61.
[5] R.Ponraj, J.V.X.Parthipan and R.Kala, A Note on Pair Sum Graphs, Journal of Scientific Research, 3, No.2, (2011), 321-329.
[6] R.Ponraj, J.V.X.Parthipan, Further Results on Pair Sum Labeling of Trees, Applied Mathematics, 32, No.2, (2011), 1270-1278.
[7] J.RaviSankar and S.Meena, Changing and Unchanging the Domination Number of a Commutative ring ,International Journal of Algebra, 6,No.27, (2012), 1343-1352.
[8] J.RaviSankar and S.Meena, Connected Domination number of a commutative ring, International Journal of Mathematical Research, 5, No.1, (2012), 5-11.
[9] J.RaviSankar and S.Meena, On Weak Domination in a Zero Divisor Graph, International Journal of Applied Mathematics, 26, No.1, (2013), 83-91.

